Aggregate Demand and the Dynamics of Unemployment

Edouard Schaal ${ }^{1}$ Mathieu Taschereau-Dumouchel ${ }^{2}$
${ }^{1}$ New York University and CREI
${ }^{2}$ The Wharton School of the University of Pennsylvania

- Benchmark model of equilibrium unemployment features too little amplification and propagation of shocks
- Revisit traditional view that depressed aggregate demand can lead to persistent unemployment crises
- We augment the DMP model with monopolistic competition a la Dixit-Stiglitz
- High aggregate demand leads to more vacancy posting
- More vacancies lower unemployment and increase demand

Introduction

Mechanism generates amplification and propagation of shocks:

Introduction

Mechanism generates amplification and propagation of shocks:

Mechanism generates amplification and propagation of shocks:

Mechanism generates amplification and propagation of shocks:

- Aggregate demand channel adds a positive feedback loop
- Multiple equilibria naturally arise
- Issues with quantitative/policy analysis
- Multiplicity sensitive to hypothesis of homogeneity
- Introducing heterogeneity leads to uniqueness
- Study coordination issues without indeterminacy
- Unique equilibrium with heterogeneity features interesting dynamics
- Non-linear response to shocks
- Multiple steady states, possibility of large unemployment crises
- NK models with unemployment
- Blanchard and Gali, 2007; Gertler and Trigari, 2009; Christiano et al., 2015
- Linearization removes effects and ignores multiplicity
- Multiplicity in macro
- Cooper and John (1988), Benhabib and Farmer (1994)...
- Search models: Diamond (1982), Diamond and Fudenberg (1989), Howitt and McAfee (1992), Mortensen (1999), Farmer (2012), Sniekers (2014), Kaplan and Menzio (2015), Eeckhout and Lindenlaub (2015), Golosov and Menzio (2016)
- Dynamic games of coordination
- Chamley (1998), Angeletos, Hellwig and Pavan (2007), Schaal and Taschereau-Dumouchel (2015)
- Unemployment-volatility puzzle
- Shimer (2005), Hagedorn and Manovskii (2008), Hall and Milgrom (2008)
- Multiple steady states in U.S. unemployment data
- Sterk (2016)
I. Model
- Infinite horizon economy in discrete time
- Mass 1 of risk-neutral workers
- Constant fraction s is self-employed
- Fraction $1-s$ must match with a firm to produce
- Denote by u the mass of unemployed workers
- Value of leisure of b
- Final good used for consumption
- Unit mass of differentiated goods j used to produce the final good
- Good j is produced by worker j
- Output

$$
\begin{aligned}
& \qquad Y_{j}= \begin{cases}A e^{z} & \text { if worker } j \text { is self-employed or matched with a firm } \\
0 & \text { otherwise }\end{cases} \\
& \text { where } A>0 \text { and } z^{\prime}=\rho z+\varepsilon_{z}
\end{aligned}
$$

Final good producer

- The final good sector produces

$$
Y=\left(\int_{0}^{1} Y_{j}^{\frac{\sigma-1}{\sigma}} d j\right)^{\frac{\sigma}{\sigma-1}}, \sigma>1
$$

yielding demand curve

$$
Y_{j}=\left(\frac{P_{j}}{P}\right)^{-\sigma} Y
$$

and we normalize $P=1$.

- Revenue from production

- The final good sector produces

$$
Y=\left(\int_{0}^{1} Y_{j}^{\frac{\sigma-1}{\sigma}} d j\right)^{\frac{\sigma}{\sigma-1}}, \sigma>1
$$

yielding demand curve

$$
Y_{j}=\left(\frac{P_{j}}{P}\right)^{-\sigma} Y
$$

and we normalize $P=1$.

- Revenue from production

$$
P_{j} Y_{j}=Y^{\frac{1}{\sigma}}\left(A e^{z}\right)^{1-\frac{1}{\sigma}}=(1-u)^{\frac{1}{\sigma-1}} A e^{z}
$$

- With v vacancies posted and u workers searching, define $\theta \equiv v / u$
- A vacancy finds a worker with probability $q(\theta)$
- A worker finds a vacancy with probability $p(\theta)=\theta q(\theta)$
- Jobs are destroyed exogenously with probability $\delta>0$

Timing
(1) u workers are unemployed, productivity z is drawn
(2) Production takes place and wages are paid
(3) Firms post vacancies and matches are formed. Incumbent jobs are destroyed with probability δ.

Unemployment follows

$$
u^{\prime}=(1-p(\theta)) u+\delta(1-s-u)
$$

Problem of a Firm

Value functions

Value of a firm with a worker is

$$
J(z, \quad)=P_{j} Y_{j}-w+\beta(1-\delta) E\left[J\left(z^{\prime}, \quad\right) \mid z\right]
$$

The value of an employed worker is

$$
W(z, \quad)=w+\beta E\left[(1-\delta) W\left(z^{\prime}, \quad\right)+\delta U\left(z^{\prime}, \quad\right)\right]
$$

and the value of an unemployed worker is

$$
U(z, \quad)=b+\beta E\left[p(\theta) W\left(z^{\prime}, \quad\right)+(1-p(\theta)) U\left(z^{\prime}, \quad\right)\right]
$$

Nash bargaining

$$
w=\gamma P_{j} Y_{j}+(1-\gamma) b+\gamma \beta p(\theta) E\left[J\left(z^{\prime}, \quad\right)\right]
$$

Problem of a Firm

Value functions

Value of a firm with a worker is

$$
J(z, u)=P_{j} Y_{j}-w+\beta(1-\delta) E\left[J\left(z^{\prime}, u^{\prime}\right) \mid z\right]
$$

The value of an employed worker is

$$
W(z, u)=w+\beta E\left[(1-\delta) W\left(z^{\prime}, u^{\prime}\right)+\delta U\left(z^{\prime}, u^{\prime}\right)\right]
$$

and the value of an unemployed worker is

$$
U(z, u)=b+\beta E\left[p(\theta) W\left(z^{\prime}, u^{\prime}\right)+(1-p(\theta)) U\left(z^{\prime}, u^{\prime}\right)\right]
$$

Nash bargaining

$$
w=\gamma P_{j} Y_{j}+(1-\gamma) b+\gamma \beta p(\theta) E\left[J\left(z^{\prime}, u^{\prime}\right)\right]
$$

- Each period, a large mass M of firms can post a vacancy at a cost of $\kappa \sim$ iid $F(\kappa)$ with support $[\underline{\kappa}, \bar{\kappa}]$ and dispersion σ_{κ}
- A potential entrant posts a vacancy iif

$$
q(\theta) \beta E\left[J\left(z^{\prime}, u^{\prime}\right)\right] \geqslant \kappa
$$

- There exists a threshold $\hat{\kappa}(z, u)$ such that firms with costs $\kappa \leqslant \hat{\kappa}(z, u)$ post vacancies

$$
\hat{\kappa}(z, u)= \begin{cases}\bar{\kappa} & \text { if } \beta q\left(\frac{M}{u}\right) E\left[J\left(z^{\prime}, u^{\prime}\right)\right]>\bar{\kappa} \\ \kappa \in[\underline{\kappa}, \bar{\kappa}] & \text { if } \beta q\left(\frac{M F(\kappa)}{u}\right) E\left[J\left(z^{\prime}, u^{\prime}\right)\right]=\kappa \\ \underline{\kappa} & \text { if } \beta q(0) E\left[J\left(z^{\prime}, u^{\prime}\right)\right]<\underline{\kappa}\end{cases}
$$

Note: there can be multiple solutions to the entry problem.

Definition

A recursive equilibrium is a set of value functions for firms $J(z, u)$, for workers $W(z, u)$ and $U(z, u)$, a cutoff rule $\hat{\kappa}(z, u)$ and an equilibrium labor market tightness $\theta(z, u)$ such that
(1) The value functions satisfy the Bellman equations of the firms and the workers under the Nash bargaining equation
(2) The cutoff $\hat{\kappa}$ solves the entry problem
(3) The labor market tightness is such that $\theta(z, u)=M F(\hat{\kappa}(z, u)) / u$, and
(4) Unemployment follows its law of motion
II. Multiplicity and Non-linearity

Equilibrium Characterization

- Define the expected benefit of entry for the marginal firm $\hat{\kappa}$

$$
\Psi(z, u, \hat{\kappa}) \equiv q(\theta(\hat{\kappa})) \beta E\left[J\left(z^{\prime}, u^{\prime}(\hat{\kappa})\right)\right]-\hat{\kappa}
$$

- At an interior equilibrium, $\Psi=0$
- Define the expected benefit of entry for the marginal firm $\hat{\kappa}$

$$
\Psi(z, u, \hat{\kappa}) \equiv q(\theta(\hat{\kappa})) \beta E\left[J\left(z^{\prime}, u^{\prime}(\hat{\kappa})\right)\right]-\hat{\kappa}
$$

- At an interior equilibrium, $\Psi=0$

Equilibrium Characterization

$$
\Psi(z, u, \hat{\kappa}) \equiv \underbrace{q(\theta(\hat{\kappa}))}_{(1)} \beta E[J(z^{\prime}, \underbrace{u^{\prime}(\hat{\kappa})}_{(2)})]-\underbrace{\hat{\kappa}}_{(3)}
$$

Forces at work

(1) Crowding out: more entrants lower probability of match
(2) Demand channel: more entrants increase demand
(3) Cost: more entrants increase margina' cost n

Number of equilibria

- (1) and (3) are substitutabilities \rightarrow unique equilibrium
- (2) is a complementarity \rightarrow multiple equilibria

Equilibrium Characterization

$$
\Psi(z, u, \hat{\kappa}) \equiv \underbrace{q(\theta(\hat{\kappa}))}_{(1)} \beta E[J(z^{\prime}, \underbrace{u^{\prime}(\hat{\kappa})}_{(2)})]-\underbrace{\hat{\kappa}}_{(3)}
$$

Forces at work
(1) Crowding out: more entrants lower probability of match
(2) Demand channel: more entrants increase demand
(3) Cost: more entrants increase marginal cost κ

Nomearo fenubra

- (2) is a complementarity \rightarrow multiple equilibria

Equilibrium Characterization

$$
\Psi(z, u, \hat{\kappa}) \equiv \underbrace{q(\theta(\hat{\kappa}))}_{(1)} \beta E[J(z^{\prime}, \underbrace{u^{\prime}(\hat{\kappa})}_{(2)})]-\underbrace{\hat{\kappa}}_{(3)}
$$

Forces at work
(1) Crowding out: more entrants lower probability of match
(2) Demand channel: more entrants increase demand
(3) Cost: more entrants increase marginal cost κ

Number of equilibria

- (1) and (3) are substitutabilities \rightarrow unique equilibrium
- (2) is a complementarity \rightarrow multiple equilibria

There are two types of multiplicity:
(1) Static

- Depending whether firms enter today or not
- Possibly multiple solutions to the entry problem
(a) $q(\theta(\hat{\kappa})) \beta E\left[J\left(z^{\prime}, u^{\prime}(\hat{\kappa})\right)\right]-\hat{\kappa}$

$\hat{\kappa}$
(a) $q(\theta(\hat{\kappa})) \beta E\left[J\left(z^{\prime}, u^{\prime}(\hat{\kappa})\right)\right]-\hat{\kappa}$

(a) $q(\theta(\hat{\kappa})) \beta E\left[J\left(z^{\prime}, u^{\prime}(\hat{\kappa})\right)\right]-\hat{\kappa}$

There are two types of multiplicity:
(1) Static

- Depending whether firms enter today or not
- Possibly multiple solutions to the entry problem
(2) Dynamic
- Because jobs live several periods, expectations of future coordination matter
- Multiple solutions to the Bellman equation
- Usually strong: complementarities magnified by dynamics
- Usually difficult to say anything about dynamic multiplicity
- We can however say something about the set of equilibria
- An equilibrium is summarized by value function J
- The mapping for J is monotone:
- Tarski's fixed point theorem: the set of fixed points is non-empty and admits a maximal and a minimal element.
- They can be found numerically by iterating from upper and lower bounds of set
- Provides an upper and lower bound on equilibrium value functions
- If coincide \Rightarrow uniqueness of equilibrium

Dynamic Multiplicity

$$
\Psi(z, u, \hat{\kappa})=q(\theta(\hat{\kappa})) \beta E\left[J\left(z^{\prime}, u^{\prime}(\hat{\kappa})\right)\right]-\hat{\kappa}
$$

Uniqueness

Proposition

If there exists $0<\eta<1-(1-\delta)^{2}$ such that for all (u, θ),

$$
\underbrace{\beta \bar{J}_{u} u p(\theta) \varepsilon_{p, \theta}}_{(2)} \leqslant \eta \frac{\kappa(\theta, u)}{q(\theta)}(\underbrace{\varepsilon_{q, \theta}}_{(1)}+\underbrace{\varepsilon_{\kappa, \theta}}_{(3)})
$$

where $\varepsilon_{p, \theta} \equiv \frac{d p}{d \theta} \frac{\theta}{p(\theta)}, \varepsilon_{q, \theta} \equiv-\frac{d q}{d \theta} \frac{\theta}{q(\theta)}, \varepsilon_{\kappa, \theta} \equiv \frac{d \kappa}{d \theta} \frac{\theta}{\kappa}$, then there exists a unique equilibrium if for all (u, θ)

$$
\frac{\beta}{1-\eta}\left|1-\delta-\gamma p(\theta)\left(1+\frac{\varepsilon_{p, \theta}}{\varepsilon_{q, \theta}+\varepsilon_{\kappa, \theta}}\right)\right|<1
$$

Corollary

1. There is a unique equilibrium as $\sigma \rightarrow \infty$ (no complementarity).
2. For any $\sigma>1$, there is a unique equilibrium as $\sigma_{\kappa} \rightarrow \infty$.

Role of Heterogeneity

(a) $q(\theta(\hat{\kappa})) \beta E\left[J\left(z^{\prime}, u^{\prime}(\hat{\kappa})\right)\right]-\hat{\kappa}$

$\hat{\kappa}$
(b) $F^{\prime}(\hat{\kappa})$

Role of Heterogeneity

(a) $q(\theta(\hat{\kappa})) \beta E\left[J\left(z^{\prime}, u^{\prime}(\hat{\kappa})\right)\right]-\hat{\kappa}$

$\hat{\kappa}$
(b) $F^{\prime}(\hat{\kappa})$

Role of Heterogeneity
(a) $q(\theta(\hat{\kappa})) \beta E\left[J\left(z^{\prime}, u^{\prime}(\hat{\kappa})\right)\right]-\hat{\kappa}$

$\hat{\kappa}$
(b) $F^{\prime}(\hat{\kappa})$

- From now on, assume heterogeneity large enough to yield uniqueness
- Despite uniqueness, the model retains interesting features:
- Highly non-linear response to shocks
- Multiplicity of attractors/steady states

Non-linear Response to Shocks
(a) $\sigma=\infty$

(b) $\sigma \ll \infty$

Non-linear Response to Shocks

(b) $\sigma \ll \infty$

Non-linear Dynamics

Non-linear Dynamics

Non-linear Dynamics

III. Quantitative Analysis

Calibration

- Period is ≈ 1 week (a twelfth of a quarter): $\beta=0.988^{1 / 12}$
- Steady-state productivity $A=(1-\bar{u})^{-1 /(\sigma-1)}$
- Productivity process from data $\rho_{z}=0.984^{1 / 12}, \sigma_{z}=\sqrt{1-\rho_{z}^{2}} \times 0.05$
- Self-employed workers: average over last decades $s=0.09$
- Matching function: $q(\theta)=\left(1+\theta^{\mu}\right)^{-1 / \mu}$ and $p(\theta)=\theta q(\theta)$
- We get $\delta=0.0081$ and $\mu=0.4$ by matching
- Monthly job finding rate of 0.45 (Shimer, 2005)
- Monthly job filling rate of 0.71 (Den Haan et al., 2000)

Calibration

The elasticity of substitution σ is crucial for our mechanism

- Large range of empirical estimates
- Establishment-level trade studies find $\sigma \approx 3$
- Bernard et. al. AER 2003; Broda and Weinstein QJE 2006
- Mark-up data says $\sigma \approx 7$
- We adopt $\sigma=4$ as benchmark
- Mark-ups are small ($\approx 2.4 \%$) in our model because of bargaining and entry

Calibrating the distribution of costs $F(\kappa)$

- Hiring cost data from French firms (Abowd and Kramarz, 2003)

$$
E(\kappa \mid \kappa<\hat{\kappa})=0.34 \text { and } \operatorname{std}(\kappa \mid \kappa<\hat{\kappa})=0.21
$$

Markup $>$ Dispersion

Calibration

Two parameters left to calibrate

- Bargaining power γ
- Value of leisure for workers b

We target two moments

- Steady-state unemployment rate of 5.5%
- Elasticity of wages with respect to productivity of 0.8 (Haefke et al, 2013)

We find $\gamma=0.2725$ and $b=0.8325$

- Both numbers are well within the range used in the literature

We verify numerically that the equilibrium is unique.

- The mapping describing the equilibrium is monotone
- Starting iterations from the lower and upper bounds yield the same outcome

Uniqueness of the full dynamic equilibrium

We verify numerically that the equilibrium is unique.

- The mapping describing the equilibrium is monotone
- Starting iterations from the lower and upper bounds yield the same outcome
\Rightarrow Uniqueness of the full dynamic equilibrium

Multiple steady states

Time-series properties after 1,000,000 periods

Standard Deviation	$\log u$	$\log v$	$\log \theta$
Data	0.26	0.29	0.44
Benchmark $(\sigma=4)$	0.28	0.25	0.53
No complementarity $(\sigma=\infty)$	0.16	0.15	0.31

The mechanism generates additional volatility.

Time-series properties after 1,000,000 periods

Standard Deviation	$\log u$	$\log v$	$\log \theta$
Data	0.26	0.29	0.44
Benchmark $(\sigma=4)$	0.28	0.25	0.53
No complementarity $(\sigma=\infty)$	0.16	0.15	0.31

\Rightarrow The mechanism generates additional volatility.

Autocorrelograms of growth in TFP, output and tightness

(a) Data
(b) $\sigma=4$
(c) $\sigma=\infty$
\Rightarrow The mechanism generates additional propagation of shocks

Autocorrelograms of growth in TFP, output and tightness

\Rightarrow The mechanism generates additional propagation of shocks

Impulse responses - Small shock

(a) Productivity z

Notes: The innovation to z is set to -1 standard deviation for 2 quarters.

Impulse responses - Large shock

(a) Productivity z

Notes: The innovation to z is set to -2.3 standard deviations for 2 quarters.

Summary

- We augment the DMP model with a demand channel
- Demand channel amplifies and propagates shocks, in line with the data
- Non-linear dynamics with possibility of multiple steady states
- We show uniqueness of the dynamic equilibrium when there is enough heterogeneity

Future research

- Optimal policy

Number of units of production

Markup

In the model

$$
\text { Markup }=\frac{\text { Unit price }}{\text { Unit cost }}=\frac{P_{j}}{w / Y_{j}}=\frac{P_{j} Y_{j}}{\gamma P_{j} Y_{j}+(1-\gamma) b+\gamma \beta \theta \hat{\kappa}}
$$

- $P_{j} Y_{j}$ is normalized to one in the steady-state
- Calibration targets the steady-state values of $\hat{\kappa}$ and θ from the data $\Rightarrow \sigma$ has no impact on steady-state markup
- Hagedorn-Manovskii (2008)
- Shimer (2005)
$\gamma=0.72, b=0.4, \beta=0.213, \beta=0.988, \theta=0.987$
- Average markup $=1.9 \%$
\square

Markup

In the model

$$
\text { Markup }=\frac{\text { Unit price }}{\text { Unit cost }}=\frac{P_{j}}{w / Y_{j}}=\frac{P_{j} Y_{j}}{\gamma P_{j} Y_{j}+(1-\gamma) b+\gamma \beta \theta \hat{\kappa}}
$$

- $P_{j} Y_{j}$ is normalized to one in the steady-state
- Calibration targets the steady-state values of $\hat{\kappa}$ and θ from the data
$\Rightarrow \sigma$ has no impact on steady-state markup
- Hagedorn-Manovskii (2008)
- $\gamma=0.052, b=0.955, \bar{\kappa}=0.584, \beta=0.99^{1 / 12}, \theta=0.634$
- Average markup $=2.4 \%$
- Shimer (2005)
- $\gamma=0.72, b=0.4, \kappa=0.213, \beta=0.988, \theta=0.987$
- Average markup $=1.9 \%$

Calibration dispersion κ

Calibrating the distribution of costs $F(\kappa)$

- Hiring cost data from French firms (Abowd and Kramarz, 2003)
- Assume:

$$
\text { Hiring cost }=D \times w
$$

where D, the cost of hiring per unit of wage, is iid.

- Then:

$$
E(\kappa \mid \kappa<\hat{\kappa})=0.34 \text { and } \operatorname{std}(\kappa \mid \kappa<\hat{\kappa})=0.21
$$

- Find the steady-state value of $\hat{\kappa}$ from steady-state free-entry condition
- Assume $F(\kappa)$ is normal $\rightarrow F(\kappa)$ is fully characterized
- We find $M=\bar{v} / F(\hat{\kappa})=3.29$ using steady-state \bar{v} from data and with

$$
\hat{\kappa}=q(\bar{\theta}) \beta \frac{(1-\gamma)(1-b)}{1-\beta(1-\delta-\gamma p(\bar{\theta}))}
$$

