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Introduction

e Benchmark model of equilibrium unemployment features too little
amplification and propagation of shocks

o Revisit traditional view that depressed aggregate demand can lead to
persistent unemployment crises

o We augment the DMP model with monopolistic competition a la
Dixit-Stiglitz
» High aggregate demand leads to more vacancy posting

> More vacancies lower unemployment and increase demand
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Introduction

o Aggregate demand channel adds a positive feedback loop
» Multiple equilibria naturally arise

e [ssues with quantitative/policy analysis
e Multiplicity sensitive to hypothesis of homogeneity
> Introducing heterogeneity leads to uniqueness
e Study coordination issues without indeterminacy
e Unique equilibrium with heterogeneity features interesting dynamics
> Non-linear response to shocks

> Multiple steady states, possibility of large unemployment crises



Literature

NK models with unemployment
» Blanchard and Gali, 2007; Gertler and Trigari, 2009; Christiano et al., 2015
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Multiplicity in macro
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Menzio (2016)
Dynamic games of coordination
> Chamley (1998), Angeletos, Hellwig and Pavan (2007), Schaal and
Taschereau-Dumouchel (2015)
Unemployment-volatility puzzle
> Shimer (2005), Hagedorn and Manovskii (2008), Hall and Milgrom (2008)

Multiple steady states in U.S. unemployment data
> Sterk (2016)
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Model

o Infinite horizon economy in discrete time

e Mass 1 of risk-neutral workers
» Constant fraction s is self-employed
» Fraction 1 — s must match with a firm to produce
> Denote by u the mass of unemployed workers

» Value of leisure of b
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Model

e Final good used for consumption

e Unit mass of differentiated goods j used to produce the final good
» Good j is produced by worker j

> Output

y. — Ae?  if worker j is self-employed or matched with a firm
7o otherwise

where A > 0 and z/ = pz + &;.



Final good producer

e The final good sector produces
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yielding demand curve

and we normalize P = 1.



Final good producer

e The final good sector produces

I o1 o—1
Y:(/Yjudj) ,O'>1
0

yielding demand curve

and we normalize P = 1.

e Revenue from production

PY, = Y7 (Ae®) "7 = (1 — u)7-1 Ae®



Labor Market

e With v vacancies posted and u workers searching, define 6 = v/u
» A vacancy finds a worker with probability q (6)

» A worker finds a vacancy with probability p () = 6q (6)

e Jobs are destroyed exogenously with probability § > 0



Timing

Timing
@ u workers are unemployed, productivity z is drawn
® Production takes place and wages are paid

® Firms post vacancies and matches are formed. Incumbent jobs are
destroyed with probability 4.

Unemployment follows

U=1-p@))u+6(l—s—u)
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Problem of a Firm

Value functions
Value of a firm with a worker is

J(z, )=PYj—w+BA-8)E[J(Z, )l|z].
The value of an employed worker is
Wiz, )=w+BE[1-8W(Z, )+sU(Z, )],

and the value of an unemployed worker is

U(z, )=b+BE[p(O)W(Z, )+(1—-pO)U(Z, )].

Nash bargaining

w=7PY;+(1—7)b+Bp(0)E [J (', )]
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Problem of a Firm

Value functions
Value of a firm with a worker is

J(z,u)=PYj—w+ B —-08)E[J(,u)]|z].
The value of an employed worker is
W (z,u) = w+ BE [(1—8) W (£, /) +6U ()],

and the value of an unemployed worker is

U(z,u)=b+BE[p(O)W (Z,J)+(1-p0) U(,u)].
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Entry Problem

e Each period, a large mass M of firms can post a vacancy at a cost of
k ~iid F (k) with support [k, %] and dispersion o

e A potential entrant posts a vacancy iif
q(0)BE [J (2,u)] > .

e There exists a threshold & (z, u) such that firms with costs k < & (z, u)
post vacancies

R if Bg(MYE[J(Z,u)] >F
R(z,u) =< k € [k, R] |fﬂq(MFu )E[J(z =k
I if Bg(0)E[J(z,u)] <&

Note: there can be multiple solutions to the entry problem.



Equilibrium Definition

Definition

A recursive equilibrium is a set of value functions for firms J(z, u), for workers
W (z,u) and U(z,u), a cutoff rule & (z,u) and an equilibrium labor market
tightness 0 (z, u) such that

@ The value functions satisfy the Bellman equations of the firms and the
workers under the Nash bargaining equation

® The cutoff & solves the entry problem
® The labor market tightness is such that 6 (z, u) = MF (3 (z,u)) /u, and

@ Unemployment follows its law of motion
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Il. Multiplicity and Non-linearity
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Equilibrium Characterization

o Define the expected benefit of entry for the marginal firm &

V(z,u, k) = q(@(/’%))ﬂE{J(Z’, o (g))] — &
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Equilibrium Characterization

o Define the expected benefit of entry for the marginal firm &
V(z,u,R)=q(0(R))BE {J(z/, u' (/’%))] -k

> At an interior equilibrium, ¥ =0
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Equilibrium Characterization

V(z,u,k)=q(0(R)) BE[J <z', u' (k)
&) @ ®
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Equilibrium Characterization

(2, u,R) = wﬂE[J <z’, u' (%))] _

6] ) ®

Forces at work
(1) Crowding out: more entrants lower probability of match
(2) Demand channel: more entrants increase demand

(3) Cost: more entrants increase marginal cost x
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Equilibrium Characterization

) = g0 )52 (2.5 )]
(1)
Forces at work

(1) Crowding out: more entrants lower probability of match
(2) Demand channel: more entrants increase demand

(3) Cost: more entrants increase marginal cost x

Number of equilibria

e (1) and (3) are substitutabilities — unique equilibrium

e (2) is a complementarity — multiple equilibria
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Sources of Multiplicity

There are two types of multiplicity:
@ Static

> Depending whether firms enter today or not

» Possibly multiple solutions to the entry problem

16
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V(z,u, k)

(2) q(O(R)BE[(Z', u'(R))] - &

only (3)

17 /34



V(z,u, k)

(2) a(0()BEM(Z', u'(R))] - &

Tg=00 —

N

(1)+(3)

(b) F'(

D

)
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V(z,u, k)

(2) q(0()BEM(Z', u' ()] - &

T 1)

.
o e
oo ——
i
(b) F'(7)
e
i
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Dynamic vs Static Multiplicity

There are two types of multiplicity:
@ Static

» Depending whether firms enter today or not
> Possibly multiple solutions to the entry problem
® Dynamic
> Because jobs live several periods, expectations of future coordination matter
» Multiple solutions to the Bellman equation

> Usually strong: complementarities magnified by dynamics

34



Dynamic Multiplicity

e Usually difficult to say anything about dynamic multiplicity
e We can however say something about the set of equilibria
» An equilibrium is summarized by value function J

» The mapping for J is monotone:

® Tarski's fixed point theorem: the set of fixed points is non-empty and admits a
maximal and a minimal element.

® They can be found numerically by iterating from upper and lower bounds of set

> Provides an upper and lower bound on equilibrium value functions

e [f coincide = uniqueness of equilibrium
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Dynamic Multiplicity

V(z,u,k)=q(0(R)BE [J(Z,u' (R))] — &

From upper bar
From lower bar
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Uniqueness

Proposition
If there exists 0 < n < 1 — (1 — 8)* such that for all (u,6),

— k(0,u
/BJuUP (9) Ep,6 < n ( ) Eq,0 + €k,0 ’
————— q(@) ~— =
2 (1) (3)
where €9 = %%, €q.0 = —%%, Er,0 = j—'g%, then there exists a unique

equilibrium if for all (u, 0)

/B < epe )
L N —5—pO) (1+—22 )| <1
T vp(0) [ 1+ Ppr—

Corollary

1. There is a unique equilibrium as o — oo (no complementarity).
2. For any o > 1, there is a unique equilibrium as o, — .
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Role of Heterogeneity

V(z,u,R)

(a) a(B(R))BEW(Z', u' ()] — &

/>~

low o

N/

(b) F'(%)
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Role of Heterogeneity

V(z,u,R)

(a) a(B(R))BEW(Z', u' ()] — &

low o

medium o

(b) F'(%)
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Role of Heterogeneity

(a) a(B(R))BEW(Z', u' ()] — &

e

medium o ----=m----

high o
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Non-linearities

e From now on, assume heterogeneity large enough to yield uniqueness

o Despite uniqueness, the model retains interesting features:

» Highly non-linear response to shocks

» Multiplicity of attractors/steady states
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Non-linear Response to Shocks

s u, R)

V(z

() o =0
(b) o < 0
steady-state z
I3
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Non-linear Response to Shocks
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Non-linear Response to Shocks
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Non-linear Response to Shocks

s u, R)

V(z

(b) o < 0

steady-state z, low u
steady-state z, high u

steady-state z, very high u
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Non-linear Response to Shocks

s u, R)

V(z

(b) o < 0

u’ also low

-
u’ also very high

steady-state z, low u
steady-state z, high u ======-----

steady-state z, very high u
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Non-linear Dynamics

medium z
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Non-linear Dynamics

medium z
low z
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Non-linear Dynamics

45°
medium z ———
low z

very low z ———
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[1l. Quantitative Analysis
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Calibration

Calibration
e Period is &~ 1 week (a twelfth of a quarter): § = 0.988%/12
e Steady-state productivity A= (1 — U)_l/("_l)
e Productivity process from data p, = 0.984Y/12 o, = \/1——p§ % 0.05
o Self-employed workers: average over last decades s = 0.09
Matching function: g (6) = (1+ 6*)™** and p (#) = 04 (0)

We get 6 = 0.0081 and p = 0.4 by matching
» Monthly job finding rate of 0.45 (Shimer, 2005)

> Monthly job filling rate of 0.71 (Den Haan et al., 2000)
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Calibration

The elasticity of substitution o is crucial for our mechanism

o Large range of empirical estimates

> Establishment-level trade studies find o ~ 3
® Bernard et. al. AER 2003; Broda and Weinstein QJE 2006

» Mark-up data says o =~ 7
e We adopt 0 = 4 as benchmark
> Mark-ups are small (= 2.4%) in our model because of bargaining and entry
Calibrating the distribution of costs F (k)
e Hiring cost data from French firms (Abowd and Kramarz, 2003)
E (k|k < &) = 0.34 and std (k|x < k) = 0.21

(> trkup_» Dispersion
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Calibration

Two parameters left to calibrate
e Bargaining power y
e Value of leisure for workers b
We target two moments

e Steady-state unemployment rate of 5.5%

o Elasticity of wages with respect to productivity of 0.8 (Haefke et al, 2013)
We find v = 0.2725 and b = 0.8325

e Both numbers are well within the range used in the literature



Numerical Simulations

We verify numerically that the equilibrium is unique.

e The mapping describing the equilibrium is monotone

e Starting iterations from the lower and upper bounds yield the same
outcome



Numerical Simulations

We verify numerically that the equilibrium is unique.

e The mapping describing the equilibrium is monotone

e Starting iterations from the lower and upper bounds yield the same
outcome

= Uniqueness of the full dynamic equilibrium



Multiple steady states

Aue = uer1 — ue (%)
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Long-run moments - Volatility

Time-series properties after 1,000,000 periods

Standard Deviation logu logv logb
Data 026 029 044
Benchmark (o = 4) 0.28 025 0.53

No complementarity (60 =o0) 0.16 0.15 0.31
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Long-run moments - Volatility

Time-series properties after 1,000,000 periods

Standard Deviation logu logv logb
Data 026 029 044
Benchmark (o = 4) 0.28 025 0.53
No complementarity (60 =o0) 0.16 0.15 0.31

= The mechanism generates additional volatility.
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Long-run moments - Propagation

Autocorrelograms of growth in TFP, output and tightness

(a) Data (b)o=4 ()o=00

Autocorrelation
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Long-run moments - Propagation

Autocorrelograms of growth in TFP, output and tightness

(a) Data (b)o=4 ()o=00

Autocorrelation

= The mechanism generates additional propagation of shocks
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Impulse responses - Small shock

% deviation % deviation

% deviation

Notes:

(a) Productivity z

0 10 20 30 40 50
(b) Unemployment rate u

Quarters since shock

The innovation to z is set to -1 standard deviation for 2 quarters.



Impulse responses - Large shock

(a) Productivity z

~10 | \

% deviation

0 10 20 30 40 50
(b) Unemployment rate u

% deviation

% deviation

0 10 20 30 40 50

Quarters since shock

Notes: The innovation to z is set to -2.3 standard deviations for 2 quarters.



Conclusion

Summary
e We augment the DMP model with a demand channel
» Demand channel amplifies and propagates shocks, in line with the data
> Non-linear dynamics with possibility of multiple steady states
e We show uniqueness of the dynamic equilibrium when there is enough
heterogeneity
Future research

e Optimal policy
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Number of units of production
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Markup

In the model

Unit price P P;Y;
Unit cost =~ w/Y;  ~P;Y;+ (1 —~)b+~B0%

Markup =

e P;Y; is normalized to one in the steady-state
o Calibration targets the steady-state values of & and 0 from the data

= o has no impact on steady-state markup
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Markup

In the model

Unit price P PY;
Unit cost =~ w/Y;  ~P;Y;+ (1 —~)b+~B0%

Markup =

e P;Y; is normalized to one in the steady-state
o Calibration targets the steady-state values of & and 0 from the data

= o has no impact on steady-state markup

e Hagedorn-Manovskii (2008)
» v =0.052, b=0.955, & = 0.584, 8 =0.991/12 9 = 0.634

> Average markup = 2.4%

e Shimer (2005)
» v=0.72, b=0.4, Kk = 0.213, § = 0.988, § = 0.987

> Average markup = 1.9%
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Calibration dispersion x

Calibrating the distribution of costs F (k)
e Hiring cost data from French firms (Abowd and Kramarz, 2003)

» Assume:
Hiring cost = D X w

where D, the cost of hiring per unit of wage, is iid.

> Then:
E (k|k < R) = 0.34 and std (k| < R) = 0.21

e Find the steady-state value of & from steady-state free-entry condition

> Assume F (k) is normal — F (k) is fully characterized

e We find M = v/F (&) = 3.29 using steady-state v from data and with

o 7 (1=~)(1-b)
R= a0 == ()
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